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ABSTRACT

On 24 May 2011, Oklahoma experienced an outbreak of tornadoes, including one rated EF5 on the en-

hanced Fujita (EF) scale and two rated EF4. The extensive observation network in this area makes this an

ideal case to examine the impact of using five different microphysics parameterization schemes, including

single-, double-, and triple-moment microphysics, in an efficient high-resolution data assimilation system

suitable for nowcasting and short-term forecasting with low latencies. Additionally, the real-time configu-

ration of the 1-km ARPS, which assimilated increments produced by 3DVAR with cloud analysis using

incremental analysis updating (IAU), had success providing a good baseline forecast. ARPS forecasts of 0–2 h

are verified using observation-point, neighborhood, and object-based verification techniques. The object-

based verification technique uses updraft helicity fields to represent mesocyclone centers, which are verified

against tornado locations from three supercells of interest. Varying levels of success in the forecasts are found

and appear to be dependent on the complexity of the storm interaction, with early forecasts of isolated storms

exhibiting the most success. Verification scores indicate that the multimoment microphysics schemes tend to

produce better forecasts of tornadic supercells. However, some of the forecasts from the single-moment

microphysics schemes perform as well as or better than the forecasts from the multimoment microphysics

schemes.

1. Introduction

On the afternoon of 24 May 2011, an outbreak of 12

tornadoes, including two EF4 [on the enhanced Fujita

(EF) scale] tornadoes and one EF5 tornado, afflicted

northern and central Oklahoma within the National

Weather Service (NWS) Norman, Oklahoma, Weather

Forecast Office’s (WFO) County Warning Area (CWA;

NWS 2016). Unfortunately, this outbreak caused numer-

ous deaths and injuries along with considerable damage.

An extensive observation networkwas in place in this area

during the spring of 2011, allowing for ample research

opportunities. Several observational (Brotzge and Luttrell

2015; French et al. 2015; Heymsfield et al. 2013; Houser

et al. 2015; Xu et al. 2015) and numerical weather pre-

diction (NWP; Clark et al. 2013; Fierro et al. 2012; Jones

et al. 2015; Shapiro et al. 2015; Tanamachi et al. 2015)

studies have taken advantage of the available observa-

tional data from the 24 May 2011 severe weather out-

break. The observational studies used different sources of

radar data to analyze various facets of this outbreak. For

example, Heymsfield et al. (2013) analyzedmeasurements

collected when flying a dual-frequency (Ku and Ka band)

nadir-pointing Doppler radar through storms containing

hail and graupel, while Houser et al. (2015) used data

collected by a mobile, rapid-scan, X-band, polarimetric,

Doppler radar (RaXPol) to understand the dynamical

processes leading to the genesis of the EF5 tornado a few

minutes after the dissipation of an EF3 tornado.

Other studies used the observational data with NWP

to show the potential benefits of assimilating lightning

data into initial analyses (Fierro et al. 2012), reveal the
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benefits of assimilating both satellite and radar data on

analyses and subsequent forecasts (Jones et al. 2015),

assess the impact of advection correction in trajectory

calculations (Shapiro et al. 2015), and explore the role

of a storm merger on a tornado handoff (Tanamachi

et al. 2015). Clark et al. (2013) assessed the tornado

pathlength forecasts via the updraft helicity (UH; Kain

et al. 2008) field from the Storm Scale Ensemble Fore-

cast (SSEF) system for several cases in 2011, including

24 May. That study showed the 4-km SSEF forecasted

tornado pathlengths quite well for 24 May 2011, but

placed theUH tracks too far to the east as a result off the

mishandling of the dryline. Regardless of the dryline

placement, the tight clustering of the tornadic and

nontornadic supercells and storms on 24May 2011made

the forecasting of supercell tracks challenging for storm-

scale models. The Center for Analysis and Prediction of

Storms (CAPS) real-time 1-km forecasting system

(Brewster et al. 2010) had good success in predicting the

potential severity and location of these storms (not

shown). However, forecasts of supercell evolution and

motions (i.e., location and timing) might be further im-

proved by using more sophisticated parameterizations

of microphysical processes.

Cloud and precipitation microphysics parameteriza-

tions play a large role in all scales of NWP. For instance,

microphysics parameterizations dictate the extent and

location of latent heating and cooling associated with

water-phase changes (i.e., freezing, melting, evapora-

tion, condensation, deposition, and sublimation) and

precipitation type and amount. These microphysical

adjustments can then impact near-surface conditions.

For example, varying properties of downdrafts can alter

near-surface temperatures and/or wind speeds and di-

rections, and cloud cover can indirectly alter near-

surface temperatures through blocking or trapping of

longwave and shortwave radiation. From a short-term,

small-scale convective forecasting perspective, these

microphysics parameterization impacts can affect sim-

ulated storm intensity, motion (i.e., speed and di-

rection), and mode (e.g., supercell versus MCS), which

are key attributes of severe weather forecasting.

Numerous studies have investigated the sensitivities

of cloud and precipitation microphysics parameteriza-

tion schemes on storm-scale forecasts (e.g., Dawson

et al. 2010, 2015; Putnam et al. 2014; Wainwright et al.

2014; Wheatley et al. 2014; Yussouf et al. 2013). These

microphysics-related studies comparing microphysics

schemes come to the general conclusion that multimo-

ment microphysics schemes produce better forecasts of

idealized and real supercells (Dawson et al. 2010, 2015;

Wainwright et al. 2014; Yussouf et al. 2013) and meso-

scale convective systems (MCSs; Putnam et al. 2014;

Wheatley et al. 2014) than do single-moment micro-

physics schemes. However, the previous studies using

simulations of supercells to compare microphysics

schemes only focused on a single, isolated supercell.

This study will evaluate microphysics schemes using a

spectrum of storm-interaction complexity ranging from

an isolated supercell to several supercells coexisting as

close as 30 km to each other.

Microphysics parameterization schemes are gen-

erally characterized as bin and bulk schemes. Bin

schemes use discrete bins to form particle size dis-

tributions for various particle sizes and types, while

bulk schemes use continuous functional forms to de-

scribe particle size distributions. Bulk schemes are

largely preferred for NWP and storm simulation

studies over bin schemes as a result of the bin schemes

being computationally more expensive and having

less success at predicting changes in ice particle con-

centrations (Stensrud 2007). Therefore, this study will

focus on the impact of various bulk schemes on storm-

scale forecasts. Specifically, research experiments are

done using five different microphysics parameteriza-

tion schemes: Lin 3-ice microphysics scheme (LIN3;

Lin et al. 1983), Weather Research and Forecasting

(WRF) Model single-moment 6-class microphysics

scheme (WSM6; Hong and Lim 2006), Milbrandt

and Yau single-moment bulk microphysics scheme

(MYSM), Milbrandt and Yau double-moment bulk

microphysics scheme (MYDM), and Milbrandt and

Yau triple-moment bulk microphysics scheme

(MYTM; Milbrandt and Yau 2005a,b).

All five of these schemes are based on particle size

distributions most generally described by a gamma

distribution:

N
x
(D)5N

0x
Dax e2lxD , (1)

where Nx is the number of particles per unit volume

(m24) for species x,D is the particle diameter (m),N0x is

the intercept parameter, ax is the spectral shape pa-

rameter, and lx is the slope parameter. LIN3, WSM6,

and MYSM only predict the mixing ratios for each

species, namely, water vapor (qy), cloud water (qc), rain

(qr), snow (qs), ice (qi), hail (qh; LIN3 andMYSM only),

and graupel (qg; WSM6 and MYSM only). For these

single-moment schemes, ax 5 0, N0x is constant (Table

1), and lx varies according to the mixing ratio (i.e.,

inverse-exponential distribution). MYDMpredicts both

mixing ratios (qx) and number concentrations (Nx) for

the same species as MYSM, so while ax 5 0 for this

study, both N0x and lx can vary with qx and Nx. Finally,

MYTM predicts qx, Nx, and reflectivities (Zx) for the

same species as MYSM. The addition of the third
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moment allows for ax to vary independently of N0x and

lx (Milbrandt and Yau 2005a).

For this study, an object-based verification technique

is utilized in a new way to determine location and timing

errors for simulated circulation centers, which are typi-

cally associated with severe weather. Additionally, all of

the projects employ for the first time the recently

updated Advanced Regional Prediction System’s

(ARPS; Xue et al. 2000; Xue et al. 2001; Xue et al. 2003)

data assimilation system (ADAS) complex cloud anal-

ysis package (Hu et al. 2006a,b; Brewster and Stratman

2015). In section 2, an overview of the 24 May 2011

Oklahoma tornado outbreak is presented. Verification

metrics and methods are described in section 3. The

experiment design and model configurations are de-

tailed in section 4. The verification results of the ex-

periment are presented in section 5. Finally, section 6

contains a summary and discussion of the results from

this study.

2. Overview of event

On 24 May 2011, a well-forecasted severe weather

outbreak plagued parts of Kansas, Missouri, Oklahoma,

Arkansas, and Texas with all facets of severe weather

(SPC 2016). Tornadic and nontornadic supercells de-

veloped along the dryline and trekked northeast across

Oklahoma, which led to the issuance of 34 tornado

warnings by the Norman, Oklahoma, WFO (Fig. 1).

Within the NWS Norman WFO’s CWA, the outbreak

was responsible for a dozen tornadoes comprising one

EF5 (S1b), two EF4 (S2a and S3a), two EF3 (S0a and

S1a), two EF2 (S1c and S3c), two EF1 (S3b and S4a),

and three EF0 (S0b; other two not annotated) tornadoes

(Fig. 1) and, unfortunately, 11 deaths and 342 injuries

(NCDC 2011). Damaging wind and large hail up to 3 in.

(7.62 cm) in diameter also wreaked havoc onmany areas

(SPC 2016).

Severe weather episodes tend to transpire when key

atmospheric ingredients (i.e., shear, lift, instability, and

moisture) come together in space and time. As Brotzge

and Luttrell (2015) described, this severe weather out-

break was a classic high-shear, high-instability event

with .25m s21 of effective bulk shear (Fig. 2a)

and .3000 J kg21 of CAPE (Fig. 2b), which collectively

support supercells, and significant tornadoes were pos-

sible given.200m2 s22 of 0–1-km storm-relative helicity

(Fig. 2c; Thompson et al. 2003; Markowski et al. 2003).

Upper-level divergence and the dryline provided large-

scale ascent and focused lift, respectively, while a stout

;800-hPa warm nose mostly prevented widespread

convection across the warm sector, especially during the

first couple of hours after convective initiation. Ample

low-level moisture aided in low lifting-condensation

levels (i.e., ,1000m), which benefit the generation of

tornadoes (Fig. 2d; Rasmussen and Blanchard 1998).

Isolated stormmodes were favored because of the deep-

layer mean wind vector being mostly perpendicular to

the dryline (Bluestein and Weisman 2000; Dial and

Racy 2004). With these severe weather ingredients

forecasted and observed, NWS and SPC forecasters

were confident that the potential for an outbreak of

tornadic supercells existed across the southern plains

region, especially Oklahoma, as reflected in the con-

vective outlooks leading up to the event (e.g., the

0600 UTC day 1 convective outlook contained a high

risk for a majority of the eastern two-thirds of Okla-

homa; SPC 2016). With such potential for severe

weather over a wide area, it is important to try to more

precisely identify areas at risk of damage and/or life-

threatening conditions.

3. Verification methodology

In this study, a few different verification techniques

are employed to properly assess the forecasts of tornadic

supercells. First, root-mean-square errors (RMSEs) for

four near-surface variables are computed using the fol-

lowing equation:

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
n

k51

( f
k
2 o

k
)2

s
, (2)

where n is the total number of observation locations and

fk and ok are the forecasted and observed variables, re-

spectively, at the kth observation location. For consis-

tency of observing instruments, the RMSEs are

calculated using only the Oklahoma Mesonet dataset,

which features 5-min averages for 1.5-m temperature T,

1.5-m dewpoint temperature Td, and 10-m u- and

y-component wind [u and y, respectively; Brock et al.

(1995); McPherson et al. (2007)]. The forecasted values

fk for T, Td, u, and y are first linearly interpolated in the

TABLE 1. Intercept parameter values for the simulations using

the single-moment microphysics parameterization schemes. MD

means monodisperse distribution, and f (T) signifies that N0 is

based on a function of temperature [see Hong and Lim (2006) for

WSM6’s N0s and Milbrandt and Yau (2005b) for MYSM’s N0i].

LIN3 WSM6 MYSM

N0r (3106m24) 8.0 8.0 8.0

N0i (3106m24) MD MD f (T)

N0s (3106m24) 3.0 f (T) 3.0

N0g (3106m24) — 4.0 0.4

N0h (3106m24) 0.04 — 0.04
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vertical to 2, 2, 10, and 10m AGL, respectively, and are

then bilinearly interpolated to the n mesonet locations.

For interpolation below the lowest model grid point at

;10m AGL, the potential temperature and specific

humidity are assumed constant and pressure is taken to

be hydrostatic.

In addition to RMSE, linear regression slopes, co-

efficients of determination, and probability distribution

functions (PDFs) are calculated for further compari-

sons. The linear regression slopes are computed using

the following equation:

m5
�
n

k51

[(o
k
2 o)( f

k
2 f )]

�
n

k51

(o
k
2 o)2

, (3)

where f and o are the means of the forecasted and ob-

served values, respectively. The coefficients of de-

termination, which are the squares of the Pearson

product-moment correlation coefficient, are computed as

R2 5

m2 �
n

k51

(o
k
2 o)2

�
n

k51

( f
k
2 f )2

, (4)

where the numerator is the regression sum of squares

and the denominator is the total sum of squares.

To determine how much a forecast of composite

reflectivity needs to be smoothed to exhibit ‘‘useful’’

skill, the fractions skill score (FSS) is computed for

30-, 40-, and 50-dBZ thresholds using the following

equation:

FSS5 12

1

N
�
N

(P
f
2P

o
)2

1

N

�
�
N

P2
f 1 �

N

P2
o

� , (5)

where Pf and Po are the fractional coverages of fore-

casted and observed values, respectively, exceeding a

threshold within a neighborhood window and N is the

FIG. 1. Maximum 0.58-tilt reflectivity (dBZ) above 40 dBZ from the Oklahoma City radar

(KTLX) for output times 1902, 1932, 2002, 2032, 2102, 2132, 2201, 2231, 2301, and 2331 UTC

on 24May 2011 and 0000, 0030, and 0101 UTC on 25May 2011 are plotted with color shading

at 50% opacity. Tornado tracks (black) are labeled by storm number and lettered sequen-

tially. Tornado warnings issued by the Norman WFO during the 24 May 2011 tornado out-

break are represented by magenta polygon outlines and stipples.
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number of neighborhood windows used for each

neighborhood size (Ebert 2008, 2009). The FSS is a

measure of the differences between the probabilities of a

forecast field exceeding a threshold and the probabilities

of an associated observed field exceeding a threshold

within subsets of the model domain (i.e., neighborhood

windows). For this study, the neighborhoodwindows are

n 3 n gridpoint squares on the 1-km model grid, where

n5 1, 3, 5, 9, 17, 33, 65, and 129 grid points. In addition,

the FSS for the full domain (N 5 1) is calculated. The

FSS ranges from 0 (no skill) to 1 (perfect skill). Roberts

and Lean (2008) defined the ‘‘useful’’ FSS as FSSuseful5
0.51 fo/2, which is the halfway point between a random

forecast (FSSrandom5 fo) and a perfect forecast (FSS5 1).

The observed base rate (i.e., the ratio between the num-

ber of grid points with values exceeding a threshold and

the total number of grid points) is fo. This study will use

FSSuseful to determine the smallest scales with potentially

‘‘useful’’ skill. Square neighborhood windows are em-

ployed, and when grid points within neighborhood win-

dows extend beyond the edge of the domain, those grid

points are assigned a value of 0. The observed composite

reflectivity from theNational Severe StormsLaboratory’s

national mosaic and quantitative precipitation estimation

(NMQ; Zhang et al. 2011) system is used as the

observation field.

An object-based verification technique was developed

to assess model performance by verifying simulated

mesocyclone centers, via the UH field, with estimated

tornado points. The locations of the six tornadoes (i.e.,

S1a, S1b, S1c, S2a, S3a, and S3b in Fig. 1) associated with

the three storms of interest are estimated every minute

based on NWS damage surveys, radar data, and high-

resolution aerial photos from Google Maps. Two adja-

cent layers of UH (viz., 0–1 and 1–6km) are used in the

verification process to confirm the simulations and are

calculated as

UH5

ðz2
z1

wz dz , (6)

which is the integral through the depth, z1–z2, of the

product of vertical velocity w and the vertical compo-

nent of relative vorticity z. These two layers are

FIG. 2. (a) Effective bulk shear (kt, where 1 kt5 0.5144m s21; wind barbs and contours); (b) surface-based CAPE

(J kg21; red contours), surface-based CIN (J kg21; blue shading), and surface wind (kt; wind barbs); (c) 0–1-km

storm-relative helicity (m2 s22; blue contours) and storm motion (kt; wind barbs); and (d) 100-mb mean parcel

lifting condensation level heights (m AGL; contours and shading) from the SPC Mesoanalysis Archive Data

website (http://www.spc.noaa.gov/exper/mesoanalysis/archive/) at 2000 UTC 24 May 2011.
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intended to represent simulated low- and midlevel me-

socyclones, respectively. Kain et al. (2008) used hourly

UH from 2 to 5 km AGL to signify midlevel mesocy-

clones, but for this study, a deeper layer of instantaneous

UH is utilized to give more robust UH values by cap-

turing more of the simulated midlevel mesocyclones.

The 0–1-km UH value is used to pinpoint rotation near

the ground and is expected to bemore closely associated

with damage reports.

Since UH is a 2D field and not point data, a 2D object-

based technique is utilized to find UH-weighted centers

(analogous to mass-weighted centers), which will be

compared to the estimated tornado points. The selection

of objects is similar to other object-based verification

studies (e.g., Davis et al. 2006a,b), but convolution is not

applied to the UH fields (only thresholding) because of

the need for UH objects to be less contiguous than pre-

cipitation fields. For this study, a search radius of 4km

(i.e., four grid points) is used to isolate 1–6-km (0–1km)

UH maxima that are greater than or equal to 300m2 s22

(15m2 s22) and their surrounding gridpoint values. A

maximumUHvalue is considered aUH-center candidate

if four out of eight (one out of eight) of the adjacent

gridpoint values equal or exceed 150m2 s22 (10m2 s22).

Once a UH-center candidate is determined, the UH-

weighted center is computed using a radius of 3km (2km)

extending from the grid point with the maximum UH

value. The 0–1-km UH-weighted centers are filtered by

requiring a 1–6-km UH-weighted center to concurrently

exist within 5km. This is meant to separate centers of

strong low-level updraft rotation that are also associated

with a substantial midlevel rotating updraft from more

benign low-level shear maxima or rotation centers that

are commonly found along gust fronts. The thresholds

were determined through a subjective assessment of what

UH entities should be considered objects (not shown).

However, the qualitative results remain similar and in-

dependent of the thresholds.

With the filtered 0–1-km UH-weighted center loca-

tions, an objective verification technique is used to

quantify location and timing errors. This technique is

similar to methods used to verify simulated tropical cy-

clone tracks and intensities (e.g., Xue et al. 2013) and

precipitation objects (e.g., Davis et al. 2006b). First,

distance errors are computed between 0–1-km UH

(0–1UH) center locations and the nearest estimated

tornado locations at coincident times (referred to as

‘‘same time,’’ or ST, for the rest of this paper). Second,

distance and timing errors are calculated between

0–1UH center locations and the nearest estimated tor-

nado locations at any time during the life of the torna-

does of interest (referred to as ‘‘anytime,’’ or AT, for the

rest of this paper). The 0–1UH centers with the smallest

distance errors at each forecast time for each storm of

interest are used in the statistics. Positive (negative)

timing errors indicate that the simulated 0–1UH centers

are too fast (too slow). For example, if the closest tornado

point to a 0–1UH center occurred at 2140 UTC while the

0–1UH center occurred at 2130 UTC, the 0–1UH center

is 10min too fast. The average maximum 0–1UH value

for each center and the total number of 0–1UH centers

are also computed for further evaluation.

4. Experiment design

For this experiment, eight microphysically diverse sets of

simulations are runusing apotential future real-time, storm-

scale forecasting framework. In short, each set of simula-

tions is initialized every 30min from 1855 to 2225 UTC,

spunup during a 5-min data assimilationwindow, and then

integrated out to 120min.Within this framework, four sets

of simulations provide forecasts encompassing each ob-

served storm of interest’s first tornadogenesis (Fig. 3). The

first storm (S1; storms depicted in Fig. 4) developed and

stayed outside the Engineering Research Center for Col-

laborative Adaptive Sensing of the Environment (CASA)

radar network and produced two tornadoes, including the

outbreak’s onlyEF5 tornado. The second and third storms

(S2 and S3, respectively) developed in the CASA radar

network and both produced EF4 tornadoes, which dissi-

pated before impacting the Oklahoma City, Oklahoma,

metropolitan area.

Recently, the ARPS (Xue et al. 2000; Xue et al. 2001;

Xue et al. 2003) ADAS complex cloud analysis package

(Hu et al. 2006a,b) was updated for several microphysics

schemes, including the five in this study (Brewster and

Stratman 2015). The goal of this update was to improve

analyses of hydrometeors using scheme-specific re-

flectivity inversion equations. The 1800 UTC 12-km

North American Mesoscale Forecast System (NAM)

forecasts (output every 3h) are interpolated to the

FIG. 3. Schematic of the timeline for all 2-h simulations (LIN3,

red; WSM6, blue; MYSM, green; MYDM, orange; and MYTM,

purple) and the six tornadoes from the three storms of interest.
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initialization times (i.e., 1855, 1925, 1955, 2025, 2055,

2125, 2155, and 2225 UTC) and used as background

fields in the 3DVAR data assimilation (Gao et al. 2004)

and complex cloud analysis (Hu et al. 2006a, Brewster

et al. 2015) to produce initial analyses on a 323 3 353

gridpoint domain with 1-km horizontal grid spacing

(Fig. 4) and 53 vertically stretched levels with a mini-

mum vertical grid spacing of 20m at the bottom.

Three analysis passes with 20, 50, and 50 iterations for

minimizations and horizontal influence radii of 45, 2, and

1km, respectively, are used to produce the 3DVAR an-

alyses through the minimization of the cost function.

Surface observations from NWS and FAAMETARs and

Oklahoma Mesonet stations are utilized in the first and

third passes. The radial wind and reflectivity data from the

WSR-88D [Dallas/Fort Worth, Texas (KFWS); Dodge

City, Kansas (KDDC); Frederick, Oklahoma (KFDR);

Tulsa, Oklahoma (KINX); Twin Lakes, Oklahoma

(KTLX); Vance Air Force Base, Oklahoma (KVNX);

and Wichita, Kansas (KICT)] and CASA IP-1 X-band

[Chickasha, Oklahoma (KSAO); Cyril, Oklahoma

(KCYR); Lawton, Oklahoma (KLWE); and Rush

Springs, Oklahoma (KRSP); see Fig. 4] radar networks

(McLaughlin et al. 2009) are applied in the second and

third passes. In addition, a 3Dmass divergence constraint

is utilized to couple the wind components together (Hu

et al. 2006b).

After the 3DVAR analyses are produced, the ARPS

model simulations are integrated forward from the in-

terpolated NAM forecasts to produce forecasts out to

125min. During the first 5min, incremental analysis

updating (IAU; Bloom et al. 1996) is performed by in-

troducing fractional analysis increments every 20s (i.e.,

specific fractions of the total increments are added directly

to the various variable fields). The fractional increments

have a triangular time-weighting pattern to slowly ramp up

and then down with the maximum around the midpoint of

the assimilation window (Fig. 5). The increments are ap-

plied to all fields except for vertical velocity and pressure

since those two fields are not directly observed in 3D and

will quickly respond to the other fields to create a

balanced state.

The simulations proceed without further data insertion

or adjustment for the remaining 120min. During the in-

tegration of ARPS, a big and small time step of 2.0 and

0.5 s, respectively, are employed in the leapfrog time for-

mulation. The 1800 UTC 12-km NAM forecasts are used

for the lateral boundary conditions. Some other model

details include the 4th-ordermomentum advection in both

the horizontal and vertical directions, scalar advection

using Zalesak’s multidimensional version of flux-corrected

transport (Zalesak 1979), 1.5-order TKE closure based on

Sun and Chang (1986), 4th-order computational mixing,

Rayleigh damping beginning at 12km AGL, National

Aeronautics and SpaceAdministration (NASA)Goddard

Space Flight Center (GSFC) atmospheric parameteriza-

tion of longwave and shortwave radiation processes [Chou

(1990, 1992) and Chou and Suarez (1994), respectively],

surface fluxes calculated from stability-dependent surface

drag coefficients using predicted surface temperature and

volumetric water content, and a two-layer force–store soil

model based on Noilhan and Planton (1989).

5. Results

a. Observation-point results

Since microphysics parameterization schemes can

have an impact on near-surface variables, the RMSE is

FIG. 4. Domain of numerical simulations with WSR-88D and

CASA radar locations (gray dots), 40-km range rings for CASA

radars (small gray circles), 150-km range rings forWSR-88D radars

(large gray circles), and estimated tornado points for S1 (green),

S2 (red), and S3 (blue).

FIG. 5. Schematic of the temporally weighted distributions of the

analysis increments.
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computed for each forecast time in 5-min intervals for

near-surface temperature, dewpoint temperature, pres-

sure, and u- and y-wind components. MYTM has the

smallest average RMSE for temperature for all simula-

tions and forecast times with 1.638C, but MYDM and

MYSM’s average RMSEs for temperature are within

0.038C (Fig. 6a). LIN3 and WSM6 both have average

RMSEs for temperature around 0.58C larger than the

MY schemes. The RMSEs for dewpoint temperature

are approximately twice the RMSEs for temperature,

but once again, the MY schemes have the smallest av-

erage RMSEs, though the differences among the mi-

crophysics schemes are smaller than for temperature

(Fig. 6b).

The RMSEs for u wind gradually increase with later

model initialization times while the RMSEs for the

y wind largely remain within the 2–4ms21 range

(Figs. 6c,d). Interestingly, the average RMSEs for the u

wind are about 0.5m s21 larger than the RMSEs for the

y wind. This difference could be due to incorrect surface

roughness lengths and boundary layer and turbulence

parameterization schemes undermixing westerlies aloft

down to the surface in areas of downdrafts or deep, well-

mixed boundary layers (note the wind vectors in western

Oklahoma in Fig. 9). To explain the difference in the

RMSEs, assume an observed wind is from the west

(W)-southwest (SW) (2408) at 10m s21, and the corre-

sponding forecasted wind is from the south (S)-SW

(2108) at 5m s21 (i.e., both slower and more easterly).

This example yields observed u and y winds of;8.7 and

5.0m s21, respectively, and forecasted u and y winds of

2.5 and;4.3m s21, respectively. As this simple example

indicates, the errors are larger for u winds (;6.2m s21)

than y winds (;0.7m s21) when the forecasted winds are

slower and more easterly. As with the other variables,

the MY schemes generally have the smallest RMSEs for

both wind components (Figs. 6c,d). For all five near-

surface variables, MYDM and MYTM exhibit very

FIG. 6. Average RMSEs plotted for each simulation for near-surface (a) temperature (8C),
(b) dewpoint temperature (8C), (c) u-component wind (m s21), and (d) y-component wind

(m s21). Average RMSEs for all simulations for eachmicrophysics scheme are annotated along

the bottom of the plots.
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similar RMSEs, with MYSM having only slightly larger

averageRMSEs. Compared toWSM6, LIN3 has smaller

averageRMSEs for all variables except for temperature,

for which the difference is less than 0.18C.
For further comparison, linear regression slopes, R2

values, and PDFs are computed to assess biases, corre-

lations, and distributions, respectively. For temperature,

MYDM and MYTM have the largest R2 values while

also having the smallest slopes (Fig. 7a). This is due to

MYDM and MYTM having a warm bias for observed

temperatures below 258C (i.e., within cold pools).

WSM6’s slope for temperature is closest to 1, with LIN3

having a slightly smaller slope, but their R2 values are

substantially smaller than those of the MY schemes

(Fig. 7a).MYSM’s slope falls in between the two pairs of

slopes, but theR2 value is closer toMYDM andMYTM.

All schemes shift the distribution peak to the bin that is

18C warmer than the bin containing the observed

FIG. 7. Linear regression slopes (m) and R2 for all paired observations and forecasts for (a) temperature (8C),
(b) dewpoint temperature (8C), (c) u-component wind (m s21), and (d) y-component wind (m s21) are plotted and

annotated for LIN3 (red), WSM6 (blue), MYSM (green), MYDM (orange), and MYTM (purple). Colored circles

depict averages for observations in distinct five-unit bins and their associated forecast values. Dashed black line

represents a perfect, unbiased forecast. Probability distribution functions for the number of forecasted (nonblack

lines) and observed (black line) values within one-unit bins are plotted in the top portion of each variable’s

plot window.
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distribution peak. Also, LIN3 and WSM6 exhibit

higher probabilities in the bins less than 238C, in-

dicating larger and colder cold pools. An example

forecast of near-surface temperatures and average

base rates at Oklahoma Mesonet stations for temper-

atures below 208–258C reveals that is indeed the case

for LIN3 and WSM6 (Fig. 8). Conversely, MYDM and

MYTM yield cold pools that are too warm, while

MYSM is the closest to the observations. On average,

all forecasts lead to forecasted surface temperatures

cooler than the observed temperatures for tempera-

tures greater than about 308C, but since the micro-

physics is not active in these warm regions, the bias is

not due to the microphysics. For dewpoint tempera-

ture, all forecasts tend to be too moist for observed

dewpoint temperatures less than 158C (i.e., the dry side

of the dryline where microphysics is not active;

Fig. 7b). The MY schemes have the largest R2 values,

and their slopes are slightly closer to 1 than the other

microphysics schemes.

FIG. 8. The 90-min forecasts of near-surface temperatures (8C) from the 2130 UTC simulations are plotted for

each of the microphysics schemes. The bar graph depicts the average base rates of temperatures below 20.08, 22.58,
and 25.08C at the Oklahoma Mesonet locations for the different microphysics schemes for all simulations. Hori-

zontal black lines represent the observed base rates. Average minimum temperatures for all simulations are an-

notated in the plot window.
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The forecasted u-wind speeds tend to be less westerly

for winds with a positive u component and more west-

erly for observed u components less than about25ms21

(Fig. 7c). The PDFs are similar among the observations

and schemes’ forecasts with the majority of the u-wind

values existing within the 25 to 0m s21 range, which is

due to the relatively expansive warm, moist sector. The

MY schemes’ simulations produce the steepest slopes

and largest R2 values for the u wind, but both values

remain near or below 0.5 (Fig. 7c). Similar to the uwind,

the forecasted y wind speeds are generally less southerly

(more southerly) for observed y winds greater than (less

than) about 5m s21 (Fig. 7d). All schemes’ simulations

are similar and substantially worse at predicting the

v wind than the u wind based on shallow slopes

(i.e., ,0.35), small R2 values (,0.20), and forecasted

distributions of the y wind being too narrow.

Overall, the comparison between the Oklahoma

Mesonet observations and forecasted values using vari-

ous statistics has highlighted somemicrophysics successes

and failures. The MY schemes, especially MYDM and

MYTM, exhibit the smallest RMSEs for all five near-

surface variables, but the largest RMSE differences be-

tween the MY schemes and LIN3 and WSM6 are for the

near-surface temperatures as a result of LIN3 andWSM6

producing cold pools that are too cold and too large. The

large differences between the observed and forecasted

wind fields (i.e., direction and magnitude) largely stems

from areas of observed and forecasted convection and

areas west of the dryline (Fig. 9); the latter of which is due

to background/model errors and not microphysical

processes. These various air masses within the model

domain likely contribute to the nonlinear nature of the

biases (i.e., overforecasting and underforecasting). The

differences among the microphysics schemes’ forecasts

of all four near-surface variables are almost entirely

confined to areas of convection (see Figs. 8 and 9). This

indicates the MY microphysics schemes contribute to

better forecasts of storm-related processes, despite the

warmer cold pools in MYDM and MYTM. While the

multimoment microphysics schemes generally out-

performed the single-moment microphysics schemes,

MYSM performed more similarly to MYDM and

MYTM than LIN3 and WSM6.

b. Neighborhood results

Observed composite reflectivity is a spatially dense,

remotely sensed field and, thus, provides a unique op-

portunity to spatially verify simulated convective systems

on the entire grid domain.At the 30-dBZ threshold, LIN3

transitions to useful skill at the smallest scale (;16km),

with MYDM exhibiting useful skill beginning around

19km (Fig. 10a). MYSM performs the worst, with useful

skill only at scales larger than ;41km. Interestingly,

MYTM is more similar to MYSM than MYDM at this

threshold. LIN3 depicts the smallest scales for the tran-

sition from no useful skill to useful skill for five out of

eight sets of simulations, with average useful skill begin-

ning at scales less than 9km twice (Fig. 10b). MYSM

performs the worst, with average useful skill never oc-

curring at scales less than 17km. In general, the earlier

initialized simulations exhibit useful skill at smaller scales

than the later initialized simulations likely because of the

increasing number of storms and the complex nature of

the storm interactions.

At the 40-dBZ threshold, MYDM begins to show

useful skill at scales around 12 km (Fig. 10c). Once

again, MYSM performs the worst with useful skill on

average not existing for scales below ;41 km. MYTM

transitions to useful skill around 18 km, which is closer

to MYDM than MYSM. While below our useful skill

threshold, MYDM and MYTM both depict more skill

than the other microphysics schemes at the smaller

scales, but at larger scales, LIN3 and WSM6 match

and/or beat MYDM and MYTM by this metric. For

all initialization times, MYDM on average has the

smallest scale at which useful skill begins, with over

half of the runs falling at or below 9 km (Fig. 10d).

Conversely, MYSM starts exhibiting useful skill at

scales larger than the other microphysics schemes

for all initialization times except for the 1900 UTC

simulations. Once again, there is a slight upward trend

in the scales where useful skill begins with later

FIG. 9. Average forecasted (using LIN3, red;WSM6, blue; MYSM,

green; MYDM, orange; and MYTM, purple) and observed (black)

wind vectors at all Oklahoma Mesonet stations within the model do-

main.An examplewind vector at the bottom left of the plot represents

a 10m s21 wind vector. The average analyzed 188C isodrosotherm

(brown dashed line) for 1900–2230 UTC represents the dryline.
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FIG. 10. Average FSS across all simulations and scales (note that FD 5 full domain) for LIN3 (red), WSM6

(blue), MYSM (green), MYDM (orange), and MYTM (purple) are plotted for thresholds of (a) 30, (c) 40, and

(e) 50 dBZ. Average neighborhood sizes (km) at which FSS 2 FSSuseful 5 0 for each microphysics scheme are

annotated in (a), (c), and (e). The FSSuseful results are represented by the horizontal dashed black lines in (a), (c),

and (e). Average neighborhood sizes (km) at which FSS2 FSSuseful 5 0 for each model initiation time (UTC) and

microphysics scheme are plotted for thresholds of (b) 30, (d) 40, and (f) 50 dBZ.
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initialization times likely because of an increase in the areal

coverage of reflectivity.

For the 50-dBZ threshold, MYDM and MYTM both

depict useful skill starting around 19 and 22km, re-

spectively, while the other three microphysical schemes

lead to useful skill beginning around 40km and larger

(Fig. 10e). For the first six model initialization times,

MYDM and MYTM depict similar average scales where

useful skill begins while WSM6 and MYSM usually per-

form the worst (Fig. 10f). As an overview, all of the

schemes generally become less skillful with increasing re-

flectivity threshold at the smaller scales, but at the larger

scales, LIN3, WSM6, and MYSM remain similar for all

thresholds while MYDM and MYTM increase in skillful-

ness with increasing thresholds (Figs. 10a,c,e). Also, the

differences among the microphysics schemes’ simulations

are greater at larger thresholds, but this is likely due to the

variability in thenumber of events exceeding the thresholds

among the different schemes, which is investigated next.

Overall, MYDMandMYTMperformed the best at the

40- and 50-dBZ thresholds, which are the most impactful

levels, and MYSM consistently performed the worst at

this verificationmetric.As compared to the observed base

rates, all of the microphysics schemes, especially the MY

schemes, yield larger forecast base rates for each thresh-

old (Fig. 11). However, LIN3’s base rates have the

smallest biases, so this success likely results in the best

FSSs for the larger scales at 30 and 40dBZ. Conversely,

MYSM’s base rates are the largest for each threshold,

which likely contributes to the poor skill relative to the

other microphysics schemes. Cross sections of a simulated

storm’s reflectivity (Fig. 12) and mixing ratios reveal that

the overforecasting of reflectivity byMYSM ismostly due

to large values of snow collocated with graupel in the

forward flank of the storm (Fig. 13). MYDM andMYTM

do not share this result, but those two schemes do advect

hail and graupel farther downwind than the other

schemes, as previous studies have noted (e.g., Dawson

et al. 2010, 2015;Wainwright et al. 2014). Beyond that, the

advected hail and graupel fields appear to be contributing

to larger areas of light to moderate rain as they fall and

melt. Even with larger forecast base rates than LIN3 and

WSM6,MYDMandMYTMstill exhibit themost forecast

skill at the smaller scales at the 40- and 50-dBZ thresholds,

which are generally associated with the most impactful

weather when deep, moist convection is present.

c. Object-based results

Supercell mesocyclones are discontinuous in space, so

simulated mesocyclones can be treated as objects using the

UH field for verification purposes. The thresholds detailed

in section 3 definewhat constitutes a simulatedmesocyclone

here; the number of simulated mesocyclones can be greatly

altered by adjusting the thresholds. For this study, fairly low

thresholds are utilized to potentially produce more robust

results and to agree with the visual assessment of what

constitutes a mesocyclone. However, the thresholds have

minimal impact on the overall scores and comparisons (not

shown). As stated before, 0–1UH centers are used to rep-

resent low-level mesocyclones and are filtered by requiring

pairing with a 1–6-km UH center to ensure that each valid

low-level feature has support from amidlevel mesocyclone.

Using all simulations’ 5-min interval output, several

hundred 0–1UHcenters were identified as objects for each

microphysics scheme (Fig. 14a). Both S1 and S2 have nu-

merous 0–1UH centers near their tornado points, but S3

has substantially fewer 0–1UH centers nearby, which in-

dicates relatively poor detection of S3’s low-level circula-

tion by the forecast system. The 0–1UH centers generally

surround S1’s tornado points, but are largely clustered to

the north of S2’s tornado locations. All of the simulations

in this experiment produce a similar number of 0–1UH

centers, with LIN3 yielding the most andMYDM yielding

the fewest (Fig. 14b). Based on the estimated tornado

points, the total number of 0–1UH centers should poten-

tially be 219 (119 for S1, 45 for S2, and 32 for S3).However,

the total number of 0–1UH centers for each microphysics

scheme is 4–5 times that value. This difference is likely a

result of the combination of the low thresholds used in

defining UH objects, not accounting for observed meso-

cyclones that did not produce a tornado (e.g., southern

Oklahoma; see Fig. 1), and some microphysics schemes

FIG. 11. Bar graph of the forecasted (LIN3, red; WSM6, blue;

MYSM, green;MYDM, orange; andMYTM, purple) and observed

(black horizontal lines) base rates of composite reflectivity for the

30-, 40-, and 50-dBZ thresholds.
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leading to overforecasting of 0–1UH centers (more likely

for LIN3 and WSM6). The simulations initialized at

2100 UTC produce the largest number of 0–1UH centers

with;150–200 centers (Fig. 14b). MYDM has the largest

averagemaximum 0–1UH for each center, andWSM6 has

the smallest average maximum 0–1UH for each center

(Fig. 14c). For most initialization times, the MY schemes,

especially for MYDM and MYTM, have distinctly larger

average maximum 0–1UH values for each center than

LIN3 and WSM6, which are very similar in this respect.

These 0–1UH intensity differences are probably related to

the cold pool strengths, where colder cold pools inhibit

more intense low-level circulations. This finding is sup-

ported by numerous previous studies (e.g.,Markowski and

Richardson 2014; Dawson et al. 2015). To briefly sum-

marize, the MY schemes produce stronger and fewer

0–1UH centers than LIN3 and WSM6.

1) STORM 1

As seen previously, numerous 0–1UH centers are

generally close to S1’s tornado locations with many

centers within 10km. This demonstrates that the use of a

computationally efficient 3DVAR and IAU system, as

CAPS is running in real time today, can produce re-

markably accurate predictions of an isolated supercell.

Digging into the details, LIN3 and WSM6 lead to same-

time 0–1UH centers that tend to be slightly fast and

somewhat south of the tornado locations (Fig. 15a). The

MY schemes have same-time 0–1UH centers that are

generally much closer to the tornado locations and each

other (Fig. 15a). For anytime 0–1UH centers, all

schemes contribute to a similar number of centers,

which are evenly spread north and south of S1’s tornado

locations (Fig. 15b).

TheMY schemes have average ST distance errors less

than 11 km for 0–1UH, but LIN3 and WSM6 have av-

erage ST distance errors 5–10km larger (Fig. 15c). The

ST distance errors for each microphysics scheme are

fairly consistent across all simulations. It is worth noting

that for the 1900 UTC simulations all of the micro-

physical schemes, except for LIN3, have average ST

distance errors around or less than 5km, which is

FIG. 12. Observed (OBS) mosaic composite reflectivity (dBZ) for 2030 UTC and 90-min forecasts (LIN3, WSM6, MYSM, MYDM, and

MYTM) of composite reflectivity (dBZ) from the 1900 UTC simulations. Black box indicates the portion of the domain used in Fig. 13.

2710 MONTHLY WEATHER REV IEW VOLUME 145

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/19/23 04:36 PM UTC



excellent given the nearly 90-min lead time. As an ex-

ample, the simulated reflectivity and 0–1UH fields from

the MYDM run are plotted in Fig. 16 and depict very

successful forecasts of S1 at 1- and 2-h lead times. The

differences in the AT distance errors among the five

schemes are smaller those for the ST distance errors, and

the average AT distance errors are less than 9km for all

of the schemes (Fig. 15d). Even though LIN3 andWSM6

exhibit AT distance errors similar to the MY schemes,

those schemes’ AT timing errors are on average mostly

15–20min too fast (Fig. 15e). The MY schemes have

substantially smaller AT timing errors withmost 0–1UH

centers occurring within 610min (i.e., too fast and too

slow) of the estimated tornado times.

Overall for S1, all of the schemes contributed to very

successful forecasts of low-level circulations near S1’s

tornado points. The MY schemes tend to produce the

smallest distance and timing errors, and WSM6 gen-

erally has the largest errors with the LIN3 results being

not too different. The largest issue with LIN3 and

WSM6 is their tendency to produce 0–1UH centers that

move too fast. As previous studies (e.g., Dawson et al.

2010, 2015) and analysis of the near-surface variables

have suggested, this is likely due to those schemes

producing cold pools that are too cold and thus inclined

to advancing too quickly. Dawson et al. (2015) attrib-

uted the stronger cold pools to the excessive evapora-

tion of rain in the downdrafts resulting in stronger,

deeper downdrafts.

2) STORM 2

While the maximum number of possible 0–1UH cen-

ters is less for S2 than S1 (i.e., shorter-lived tornado), a

plethora of 0–1UH centers still exist near S2’s tornado

points for all schemes. Given that a 1-kmmodel is trying

to accurately forecast the locations of tornadic circula-

tions, these forecasts are considered successful. TheMY

schemes’ ST 0–1UH centers are generally 5–10km north

FIG. 13. East–west cross sections of the maximum reflectivity (dBZ; color shading) existing between the top and bottom of the black

boxes in Fig. 12. For the simulations, rain (green), snow (blue), hail (red), and graupel (magenta)mixing ratios are contoured at 0.01 (short

dashed lines), 0.1 (long dashed lines), and 1.0 (solid lines) g kg21.
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of the tornado locations (Fig. 17a). Conversely, WSM6’s

0–1UH centers are too fast and too far south, while

LIN3’s 0–1UH centers are mostly just too fast. For

anytime centers, the majority of the 0–1UH centers

occur near the tornado locations with a bias to the north,

except forWSM6, which also has the smallest number of

centers (Fig. 17b). The earlier initiated sets of simula-

tions exhibit more variability in ST distance errors

among the different microphysics schemes than the later

simulation runs (Fig. 17c). Average ST distance errors

for 0–1UH centers range from about 15–20km for the

MY schemes to ;29km for LIN3 and WSM6. The

0–1UHATdistance errors are substantially smaller than

the ST distance errors with average errors less than

15km for all schemes, and the differences among the

schemes are smaller, as well (Fig. 17d). However, timing

errors range from ;14min with MYDM and MYTM,

which tend to be too slow, to nearly 30min with LIN3,

which is generally too fast (Fig. 17e).

Overall for S2, the MY schemes mostly outperform

LIN3 and WSM6, with mostly smaller distance and

timing errors. As mentioned before, there are fewer

FIG. 14. (a) Filtered 0–1UH centers for LIN3 (red), WSM6 (blue), MYSM (green), MYDM

(orange), and MYTM (purple) for all simulations. Gray upside-down triangles represent tor-

nado locations every minute, while black upside-down triangles represent tornado locations

occurring at the same times as the forecast output. (b) Line graph of the total number of 0–1UH

centers for all simulations with the total number of centers across all simulations annotated

along the bottom of the plot. (c) Line graph of the average of each center’s maximum 0–1UH

(m2 s22) for each simulation with the overall average of each center’s maximum 0–1UH an-

notated along the bottom of the plot.
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0–1UH centers near S2 than near S1 even though S2

developed within the CASA radar network. However,

S1 was, at least initially, a more isolated storm than S2,

which in reality was influenced by storm interactions

and mergers. This complication likely led to larger

distance and timing errors, but the forecast system still

managed to produce successful forecasts of low-level

circulations.

3) STORM 3

While the microphysically diverse set of simulations

had good success with forecasting 0–1UH centers for

FIG. 15. (a) ST and (b) AT 0–1UH centers for S1 from all simulations with LIN3 (red), WSM6 (blue), MYSM

(green),MYDM (orange), andMYTM (purple). Larger colored-filled circles represent the average locations of the

microphysical schemes’ 0–1UH centers. The number of 0–1UH centers within the plot window are annotated in

(a) and (b). Line graphs show the average (c) ST distance errors (km), (d) AT distance errors (km), and (e) AT

timing errors (min) for all simulations’ 0–1UH centers. The respective averages across all simulations for each

microphysics scheme are annotated within the plots.
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S1 and S2, most of the simulations struggle with

forecasting 0–1UH centers near S3’s tornado loca-

tions, as depicted in Fig. 14. Few ST 0–1UH centers

exist within 10 km of S3’s tornado points, and average

0–1UH centers indicate a southeast bias due to sim-

ulated mesocyclones existing ;30 km to the southeast

of S3 (Fig. 18a). This bias is even more evident when

timing differences are ignored (Fig. 18b). However,

these simulated mesocyclones are not spurious since

another supercell was observed propagating through

the same area (see Fig. 1). Not surprisingly, ST andAT

distance errors for 0–1UH are generally greater than

20 km for all microphysics schemes (Figs. 18c,d). All

simulations produce 0–1UH centers that are mostly

within 20min of the tornado occurrence times, and

WSM6 is the only scheme that is mostly too fast

(Fig. 18e).

Since very few 0–1UH centers were forecasted near

S3, the results above are not too meaningful except that

the forecast system as a whole struggled with S3 even

though the storm developed and propagated through the

CASA radar network. Other model configuration im-

provements, besides using more advanced microphysics

schemes, need to be explored to improve the forecasts of

S3, which was directly affected by storm interactions and

mergers.

FIG. 16. Observed 0.58-tilt reflectivity (dBZ) fromKTLX for (a) 1902, (b) 2002, and (c) 2102 UTC are interpolated and plotted onto the

1-km model grid. Forecasts of 1 km AGL simulated reflectivity (dBZ; colored) from the 1900 UTC MYDM simulation are plotted for

(d) 1900UTC (t5 0 s), (e) 2000UTC (t5 3600 s), and (f) 2100UTC (t5 7200 s). The 0–1UH results are contoured in black in (d)–(f) from

10 to 210m2 s22 with an interval of 25m2 s22. The maximumUH value (m2 s22) in each plot window is annotated near the bottom of each

plot. Light gray upside-down triangles depict the estimated tornado locations every minute, and darker gray circles in (c) and (f) indicate

the estimated location of the tornado occurring at 2100 UTC.
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6. Summary and discussion

On 24 May 2011, an outbreak of tornadic supercells

propagated across central Oklahoma producing several

strong to violent tornadoes. Unfortunately, the torna-

does and supercells caused numerous deaths and in-

juries along with widespread damage. However, the

extensive observation network across central Okla-

homa during the spring of 2011 provides an opportunity

for forecast system sensitivity studies, such as this one,

to explore ways to potentially improve short-term,

storm-scale forecasts of severe convection. Data from

numerous observation sources in the area were used in

the data assimilation process, which consisted of using

3DVAR with ADAS complex cloud analysis, to pro-

duce model state variable increments, which were in-

troduced during an IAU window, for an ARPS 1-km

model. In conjunction with this study, the ADAS

complex cloud analysis (Brewster and Stratman 2015)

and IAU (Brewster et al. 2015; Brewster and Stratman

FIG. 17. As in Fig. 15, but for S2.
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2016) packages within the ARPS system were both

updated.

To emulate a real-time, continuous storm-scale fore-

casting system, eight microphysically diverse sets of

simulations were initialized every 30min starting at

1900 UTC and integrated out to 2h. This forecast frame-

work allowed for in-depth examinations of sensitivities

related to microphysics parameterization schemes. Simu-

lations with different microphysics schemes (i.e., LIN3,

WSM6,MYSM,MYDM, andMYTM)were compared to

assess the characteristics of each scheme and to de-

termine which scheme leads to better forecast results.

Observation-point, neighborhood, and object-based

verifications techniques were utilized to quantitatively

evaluate the forecasts.

Prior studies investigating the differences between

single-moment and multimoment microphysics schemes’

impacts on forecasts of supercells (Dawson et al. 2010,

2015;Yussouf et al. 2013) andMCSs (Wheatley et al. 2014)

have generally found that the multimoment microphysics

FIG. 18. As in Fig. 15, but for S3.
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schemes yield better forecasts of storm intensity, structure,

and evolution. Hence, the expectation was that MYDM

and MYTM would outperform LIN3, WSM6, and

MYSM. To aggregate and simplify all of the verification

results, unity-based normalization is first used to normal-

ize all of the verification metrics’ average values for each

microphysics schemes’ simulations onto a scale from0 to 1,

with a value of 1 indicating a perfect forecast (Fig. 19). The

perfect skill (no skill) values used for this normalization

include 5 (0) for RMSE, 1 (0) for slopes and R2 values,

1 (100) for FSS 2 FSSuseful 5 0 scales, 0 (56.6) for the

distance errors, and 0 (60) for the timing errors. Next, each

verification group’s three normalized values for each mi-

crophysics scheme are summed together to give a value

between 0 and 3, with 3 indicating perfect forecast skill.

For the near-surface variables, the normalized values for

RMSE, slope, and R2 are summed together. For the

neighborhood metric, the normalized values for the

FSS 2 FSSuseful 5 0 scales at the three reflectivity

thresholds are summed together. For the storm location

and timing errors, the normalized values of the ST andAT

distances and timing errors are summed. Comparisons can

only be made among the different microphysics schemes

using variables with the same units (e.g., the normalized

values of the neighborhood and object-based metrics

cannot be compared with each other).

For near-surface temperatures, it could be argued

that MYSM outperformed MYDM and MYTM as a

result of having slopes closer to 1 (Fig. 19). However,

MYDM and MYTM have smaller RMSEs and larger

R2 values, so MYSM’s success over MYDM and

MYTM is limited. For the other near-surface variables,

MYDM and MYTM do show improvement over the

single-moment schemes, but it is worth noting that

MYSM’s forecasts of near-surface variables end up

closer to the MYDM and MYTM forecasts than the

LIN3 and WSM6 forecasts, which tend to have colder

and larger cold pools (see Fig. 8). By these metrics, it

appears the MY schemes, as a group, outperformed

LIN3 and WSM6.

As a result of having the largest forecasted base

rates for composite reflectivity (see Fig. 11), MYSM

exhibited the least ‘‘useful’’ skill among the five

microphysics schemes (Fig. 19). LIN3 has only a slightly

smaller overall score thanMYTM for the neighborhood-

based verification technique, likely because of MYTM’s

larger forecasted base rates, but MYTM generally de-

picted more skill at the 40- and 50-dBZ thresholds at the

smaller scales. Even with commonly higher forecasted

base rates than LIN3 and WSM6 (but less than MYSM

and MYTM), MYDM usually exhibited the most skill at

all three reflectivity thresholds.

In regard to the 0–1UH centers, the MY schemes

resulted in substantially fewer and stronger 0–1UH

centers than LIN3 and WSM6, so in this respect, no

inference can be made that separates the single-

moment microphysics schemes from the multimoment

microphysics schemes. For S1, the MY schemes pre-

dominately performed similarly and largely out-

performed LIN3 and WSM6, but overall, the entire set

of simulations had remarkably good success at fore-

casting S1’s circulation locations (Fig. 19). Even though

the simulations had somewhat less success at fore-

casting S2’s circulation locations, the MY schemes still

substantially outperformed LIN3 and WSM6 (Fig. 19).

Conversely, all of the microphysics schemes using the

base data assimilation scheme struggled with fore-

casting the more complex S3 event and mostly yielded

somewhat similar errors (Fig. 19).

Overall, the simulations using the MY schemes out-

performed the simulations using LIN3 and WSM6, so

based on this finding, the differences between the vari-

ous types of microphysics schemes (i.e., LIN3 and

WSM6 versus the MY schemes) are larger than the

differences between single-moment and multimoment

microphysics schemes. Even though the MY schemes

exhibited similar abilities to forecast the tornado loca-

tions from the three storms of interest, the multimoment

MY schemes do tend to better forecast the near-surface

variables and simulated reflectivity coverage. Addi-

tionally, the computational cost of the MY schemes is

almost double that of LIN3 andWSM6, and while not as

large, the differences in computational cost among

the MY schemes are also noticeable (Fig. 20). All of

these factors must be taken into account when design-

ing a model configuration best suited for storm-scale,

FIG. 19. Summary of the forecast skill of each microphysics

scheme using summed values (annotated and shaded in blue based

on the value) of the various normalized verification metrics.
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short-term forecasts of severe convection within the

confines of computational resources and the desired low

latency.

Even though meaningful results were revealed in this

study using just one case, the lack of knowledge of the

statistical significance is a major caveat. To potentially

address this concern, additional ARPS 1-km simulations

of tornadic supercell events, such as the 26 December

2015 tornadoes near Dallas, Texas, using the same data

assimilation techniques and model configurations could

be executed to fully understand the microphysics sensi-

tivities tested in this experiment. Also, ensemble fore-

casts, which would use initial analyses produced by

either a 3DVAR or ensemble Kalman filters (EnKF)

based system, could be utilized to determine statistical

significance. Although the fivemicrophysics schemes used

in this study provided a decent spread of solutions, other

single-moment and multimoment schemes (e.g., Thomp-

sonmicrophysics scheme; Thompson et al. 2008) currently

not in the ARPS package should be added and tested

alongside the current set of microphysics schemes.

The object-based verification technique utilized in

this study to determine distance and timing errors

proved to be highly effective in discerning the model’s

skill at forecasting circulation locations. However,

perhaps other observed or analyzed objects, such as

radar-detected rotation tracks (Lakshmanan et al.

2013) or analysis locations of low-level vorticity or UH,

can be used instead of the estimated tornado locations

to streamline the verification process. Furthermore, the

object-based verification technique can be employed to

verify, for example, forecasted hail and graupel mixing

ratios with radar-detected ZDR columns (Kumjian and

Ryzhkov 2008). With respect to the neighborhood-

based verification technique, most of the simulations

tended to substantially overforecast the composite re-

flectivity field, which is likely due to both the micro-

physics scheme and the relatively large 1-km grid

spacing (i.e., coarser than reality), so in addition to

looking at cross sections of reflectivity at various

heights (Figs. 12 and 13), using percentiles or other

precipitation fields, such as precipitation rates, could

be explored in determining skill despite the over-

forecasting bias. However, an overmoistening in

downdrafts in the cloud analysis scheme used in this

work has recently been identified, and modifications to

the cloud analysis scheme to address this issue have

been made. These may reduce the reflectivity over-

forecast bias when the model is initialized with ongoing

convection.

This study highlights the ability of a 1-km forecast

system to successfully predict potentially tornadic

supercells on short time scales using increments de-

rived from analyses produced by the 3DVAR and

ADAS complex cloud analysis package, so when con-

sidering the computational cost of real-time data as-

similation systems, less computationally intensive

systems, such as the one used in this study, should be

considered alongside more computationally expensive

systems, such as EnKFs (Evensen 1994). A study

comparing both data assimilation systems is needed to

better assess any potential benefits each data assimi-

lation system may provide to short-term, storm-scale

forecasts of severe convection.
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FIG. 20. Line graph of the total CPU time (core hour) used for

each LIN3 (red), WSM6 (blue), MYSM (green), MYDM (orange),

and MYTM (purple) simulation. Note that for these experiments,

50 cores of Intel Xeon ‘‘Sandy Bridge’’ processors were used, so

100 core hours represent approximately 2 h of wall-clock time. The

forecasts are generally scalable by core. With the current ARPS

real-time system using 200 cores, LIN3 and WSM6 would have

wall-clock times of ;15–25min for the 2-h runs, and the MY

schemes would need ;35–55min of wall-clock time to complete

the same 2-h forecast.
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